Thin-film SiC Encapsulation for Neural Prostheses

Grant 5R44NS035763-03 | Period of support: 06/2000 - 05/2003

Challenge/Problem:

Dielectrics used in semiconductor devices, $\mathrm{Si_3N_4}$ and $\mathrm{SiO_2}$, corrode or exhibit poor $\mathrm{H_2O}$ and ion barrier properties. The challenge is to develop alternative dielectrics that provide long-term *in vivo* stability while remaining compatible with established semi-conductor processing methods.

Approach:

Thin films of amorphous silicon carbide (a-SiC) and amorphous silicon oxycarbide (a-SiOC), deposited at 100-350°C by plasma enhanced chemical vapor deposition (PECVD), are investigated as implantable dielectrics. Biocompatibility and long-term *in vitro* stability are assessed by histology, corrosion rate, and leakage current measurements.

Business Name and Point of Contact:

Company: EIC Laboratories, Inc.

111 Downey St.

Norwood, MA 02062

Contact: Stuart F. Cogan

1.781.769.9450

Progress:

Amorphous SiC was found biocompatible by histology of neural tissue adjacent to a-SiC coated metal shafts in cortex. Corrosion rates of a-SiC were 20 times lower than Si_3N_4 at 90° C in saline and not measurable at 37° C. Leakage currents of $<10^{-11}$ A/cm² are achieved with a-SiC and a-SiOC at a ± 5 V bias.

Current/Near Term Products:

Amorphous SiC and a-SiOC coating services are provided to researchers and companies developing neuroprosthetic and other implantable devices. Coatings of a-SiC/a-SiOC with exceptional stability and encapsulating properties are patented by EIC Laboratories (U.S. 5,755,759) and available for licensing.

Future Plans:

To evaluate a-SiC coatings on flexible, polymer substrates and to conduct long-term pulsing studies of charge-injection electrodes on metallized a-SiC films. To develop a reactive ion etching process for photolithographic patterning of a-SiC and a-SiOC thin films.

Keywords: dielectric; corrosion, electrode, PECVD; silicon carbide